Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 28

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Experimental study on local damage to reinforced concrete panels subjected to oblique impact by projectiles

Okuda, Yukihiko; Nishida, Akemi; Kang, Z.; Tsubota, Haruji; Li, Y.

Journal of Nuclear Engineering and Radiation Science, 9(2), p.021801_1 - 021801_12, 2023/04

Most empirical formulas were proposed to evaluate the local damage to reinforced concrete (RC) structures based on impact tests conducted with a rigid projectile at an impact angle normal to the target structure. Only a few impact tests were performed involving a soft projectile. Therefore, in this study, we conducted a series of impact tests to evaluate the local damage to RC panels subjected to normal and oblique impacts by rigid and soft projectiles. This paper presents the test conditions, test equipment, test results, and obtained knowledge on local damage to RC panels subjected to normal and oblique impacts.

Journal Articles

ARKADIA; For the innovation of advanced nuclear reactor design

Ohshima, Hiroyuki; Asayama, Tai; Furukawa, Tomohiro; Tanaka, Masaaki; Uchibori, Akihiro; Takata, Takashi; Seki, Akiyuki; Enuma, Yasuhiro

Journal of Nuclear Engineering and Radiation Science, 9(2), p.025001_1 - 025001_12, 2023/04

This paper describes the outline and development plan for ARKADIA to transform advanced nuclear reactor design to meet expectations of a safe, economic, and sustainable carbon-free energy source. ARKADIA will realize Artificial Intelligence (AI)-aided integrated numerical analysis to offer the best possible solutions for the design and operation of a nuclear plant, including optimization of safety equipment. State-of-the-art numerical simulation technologies and a knowledge base that stores data and insights from past nuclear reactor development projects and R&D are integrated with AI. In the first phase of development, ARKADIA-Design and ARKADIA-Safety will be constructed individually, with the first target of sodium-cooled reactor. In a subsequent phase, everything will be integrated into a single entity applicable not only to advanced rectors with a variety of concepts, coolants, configurations, and output levels but also to existing light-water reactors.

Journal Articles

Validation of feedback reactivity evaluation models for plant dynamics analysis code during unprotected loss of heat sink event in sodium-cooled fast reactors

Yoshimura, Kazuo; Doda, Norihiro; Igawa, Kenichi*; Tanaka, Masaaki; Yamano, Hidemasa

Journal of Nuclear Engineering and Radiation Science, 9(2), p.021601_1 - 021601_9, 2023/04

Feedback reactivity automatically caused by radial expansion of the core is known as one of the inherent safety features in a sodium-cooled fast reactor (SFR). In order to validate the evaluation models of the reactivity feedback equipped in the in-house plant dynamics analysis code named Super-COPD, the benchmark analyses for the unprotected loss of heat sink (ULOHS) tests of BOP-302R and BOP-301 in an experimental SFR, EBR-II were conducted and the applicability of the evaluation method for the reactivity feedback was indicated during the ULOHS even, by comparing the numerical results and the experimental data.

Journal Articles

Post-test analyses of the CMMR-4 test

Yamashita, Takuya; Madokoro, Hiroshi; Sato, Ikken

Journal of Nuclear Engineering and Radiation Science, 8(2), p.021701_1 - 021701_13, 2022/04

Journal Articles

Visualization of radioactive substances using a freely moving gamma-ray imager based on Structure from Motion

Sato, Yuki; Minemoto, Kojiro*; Nemoto, Makoto*; Torii, Tatsuo

Journal of Nuclear Engineering and Radiation Science, 7(4), p.042003_1 - 042003_12, 2021/10

Journal Articles

Simulation study of a shield-free directional gamma-ray detector using Small-Angle Compton Scattering

Kitayama, Yoshiharu; Terasaka, Yuta; Sato, Yuki; Torii, Tatsuo

Journal of Nuclear Engineering and Radiation Science, 7(4), p.042006_1 - 042006_7, 2021/10

Journal Articles

Feasibility study of the one-dimensional radiation distribution sensing method using an optical fiber sensor based on wavelength spectrum unfolding

Terasaka, Yuta; Watanabe, Kenichi*; Uritani, Akira*; Yamazaki, Atsushi*; Sato, Yuki; Torii, Tatsuo; Wakaida, Ikuo

Journal of Nuclear Engineering and Radiation Science, 7(4), p.042002_1 - 042002_7, 2021/10

For the application in the measurement of the high dose rate hot spots inside the Fukushima Daiichi Nuclear Power Station (FDNPS) buildings, we propose a novel one-dimensional radiation distribution sensing method using an optical fiber sensor based on wavelength spectrum unfolding. The proposed method estimates the incident position of radiation to the fiber by the unfolding of the wavelength spectrum output from the fiber edge using the fact that the attenuation length of light along the fiber depends on the wavelength. Because this method measures the integrated light intensity, this method can avoid the problem of counting loss and signal pile-up, which occurs in the radiation detector with pulse counting mode under high dose rate field. Through basic experiments using the ultraviolet light source and $$^{90}$$Sr/$$^{90}$$Y radioactive point source, basic properties of source position detection were confirmed.

Journal Articles

Promising neutron irradiation applications at the high temperature engineering test reactor

Ho, H. Q.; Honda, Yuki*; Hamamoto, Shimpei; Ishii, Toshiaki; Takada, Shoji; Fujimoto, Nozomu*; Ishitsuka, Etsuo

Journal of Nuclear Engineering and Radiation Science, 6(2), p.021902_1 - 021902_6, 2020/04

Journal Articles

A Study on sodium-concrete reaction in presence of internal heating

Kawaguchi, Munemichi; Miyahara, Shinya*; Uno, Masayoshi*

Journal of Nuclear Engineering and Radiation Science, 6(2), p.021305_1 - 021305_9, 2020/04

Sodium-concrete reaction (SCR) is one of the important phenomena during severe accidents in sodium-cooled fast reactors (SFRs) owing to the generation of large sources of hydrogen and aerosols in the containment vessel. In this study, SCR experiments with an internal heater were performed to investigate the chemical reaction beneath the internal heater (800$$^{circ}$$C), which was used to simulate the obstacle and heating effect on SCR. Furthermore, the effects of the internal heater on the self-termination mechanism were discussed. The internal heater on the concrete hindered the transport of Na into the concrete. Therefore, Na could start to react with the concrete at the periphery of the internal heater, and the concrete ablation depth at the periphery was larger than under the internal heater. The high Na pool temperature of 800$$^{circ}$$C increased largely the Na aerosol release rate, which was explained by Na evaporation and hydrogen bubbling, and formed the porous reaction product layer, whose porosity was 0.54-0.59 from the mass balance of Si and image analyzing EPMA mapping. They had good agreement with each other. The porous reaction products decreased the amount of Na transport into the reaction front. The Na concentration around the reaction front became about 30wt.% despite the position of the internal heater. It was found that the Na concentration condition was one of the dominant parameters for the self-termination of SCR, even in the presence of the internal heater.

Journal Articles

Development of experimental technology for simulated fuel-assembly heating to address core-material-relocation behavior during severe accident

Abe, Yuta; Yamashita, Takuya; Sato, Ikken; Nakagiri, Toshio; Ishimi, Akihiro

Journal of Nuclear Engineering and Radiation Science, 6(2), p.021113_1 - 021113_9, 2020/04

Journal Articles

Evaluation of radiation effects on residents living around the NSRR under external hazards

Motome, Yuiko; Akiyama, Yoshiya; Murao, Hiroyuki

Journal of Nuclear Engineering and Radiation Science, 6(2), p.021115_1 - 021115_11, 2020/04

The nuclear safety research reactor (NSRR) is a research reactor of training research isotopes general atomics -annular core pulse reactor type. The NSRR facility has been utilized for fuel irradiation experiments to study the behaviors of nuclear fuels under reactivity-initiated accident conditions. Under the new regulation standards, which was established after the Fukushima Daiichi accident, research reactors are regulated based on the risk of the facilities. To apply the graded approach, the radiation effects on residents living around the NSRR under the external hazards were evaluated, and the level of the risk of the NSRR facility was investigated. This paper summarizes the result of the evaluation in the case where the safety functions are lost due to a tornado, an earthquake followed by a tsunami. All in all, the risk is confirmed to be relatively low, since the effective dose on the residents is found to be below 5 mSv per event due to the loss of the safety functions.

Journal Articles

Improvement of probabilistic fracture mechanics analysis code PASCAL-SP with regard to PWSCC

Mano, Akihiro; Yamaguchi, Yoshihito; Katsuyama, Jinya; Li, Y.

Journal of Nuclear Engineering and Radiation Science, 5(3), p.031505_1 - 031505_8, 2019/07

Probabilistic fracture mechanics (PFM) analysis is expected as a rational method for the structural integrity assessment because it can consider the uncertainties of various influence factors and can evaluate the quantitative value such as failure probability of a cracked component as the solution. In the Japan Atomic Energy Agency, a PFM analysis code PASCAL-SP has been developed for the structural integrity assessment of piping welds in nuclear power plants. In the latest few decades, a number of cracks due to primary water stress corrosion cracking (PWSCC) have been detected in the nickel-based alloy welds in the primary piping of pressurized water reactors (PWRs). Thus the structural integrity assessment taking account of PWSCC has become important. In this paper, we improved PASCAL-SP for the assessment considering PWSCC by introducing the several analytical functions such as the evaluation models of crack initiation time, crack growth rate and probability of crack detection. By using improved PASCAL-SP, the failure probabilities of pipes with a circumferential crack or an axial crack due to PWSCC were evaluated as numerical examples. We also evaluated the influence of a leak detection and a non-destructive examination on the failure probabilities. On the basis of the numerical results, we concluded that the improved PASCAL-SP is useful for evaluating the failure probability of pipe taking PWSCC into account.

Journal Articles

Subchannel analysis of thermal-hydraulics in a fuel assembly with inner duct structure of a sodium-cooled fast reactor

Kikuchi, Norihiro; Imai, Yasutomo*; Yoshikawa, Ryuji; Doda, Norihiro; Tanaka, Masaaki; Ohshima, Hiroyuki

Journal of Nuclear Engineering and Radiation Science, 5(2), p.021001_1 - 021001_12, 2019/04

In the design study of an advanced loop-type sodium-cooled fast reactor in Japan, a specific fuel assembly (FA) named FAIDUS (Fuel Assembly with Inner DUct Structure) has been considered as one of the measures to enhance safety of the reactor during the core disruptive accident. In this study, thermal-hydraulics in FAIDUS was investigated with the in-house subchannel analysis code named ASFRE. Before the application to FAIDUS, applicability of ASFRE to FAs was confirmed through the numerical simulations for the experiments of simulated FA. Through the comparisons between the numerical results of thermal-hydraulic analyses of FAIDUS and a typical FA without the inner duct, it was indicated that significant asymmetric temperature distribution would not occur in FAIDUS at both high and low flow rate conditions.

Journal Articles

Development and validation of SAS4A code and its application to analyses on severe flow blockage accidents in a sodium-cooled fast reactor

Fukano, Yoshitaka

Journal of Nuclear Engineering and Radiation Science, 5(1), p.011001_1 - 011001_13, 2019/01

Local subassembly faults (LFs) have been considered to be of greater importance in safety evaluation in sodium-cooled fast reactors (SFRs) because fuel elements were generally densely arranged in the subassemblies (SAs) in this type of reactors, and because power densities were higher compared with those in light water reactors. A hypothetical total instantaneous flow blockage at the coolant inlet of an SA (HTIB) gives most severe consequences among a variety of LFs. Although an evaluation on the consequences of HTIB using SAS4A code was performed in the past study, SAS4A code was further developed by implementing analytical model of power control system in this study. An evaluation on the consequences of HTIB in an SFR by this developed SAS4A code clarified that the conclusion in the past study was almost same as that in this study. Furthermore SAS4A code was newly validated using four in-pile experiments which simulated HTIB events. The validity of SAS4A application to safety evaluation on the consequence of HTIB was further enhanced in this study. Thus the methodology of HTIB evaluation was established in this study together with the past study and is applicable to HTIB evaluations in other SFRs.

Journal Articles

Mechanical properties of cubic (U,Zr)O$$_{2}$$

Kitagaki, Toru; Hoshino, Takanori; Yano, Kimihiko; Okamura, Nobuo; Ohara, Hiroshi*; Fukasawa, Tetsuo*; Koizumi, Kenji

Journal of Nuclear Engineering and Radiation Science, 4(3), p.031011_1 - 031011_7, 2018/07

Journal Articles

Uncertainty analysis for source term evaluation of high temperature gas-cooled reactor under accident conditions; Identification of influencing factors in loss-of-forced circulation accidents

Honda, Yuki; Sato, Hiroyuki; Nakagawa, Shigeaki; Ohashi, Hirofumi

Journal of Nuclear Engineering and Radiation Science, 4(3), p.031013_1 - 031013_11, 2018/07

There is growing interest in uncertainty analysis for probabilistic risk assessment (PRA). The focus of this research is to propose and trial investigate the new approach which identify influencing factors for uncertainty in a systematic manner for High Temperature Gas -cooled Reactor (HTGR). As a trial investigation, this approach is tested to evaluation of maximum fuel temperature in a depressurized loss-of-forced circulation (DLOFC) accident and failure of mitigation systems such as control rod systems from the view point of reactor dynamics and thermal hydraulic characteristics. As a result, 16 influencing factors are successfully selected in accordance with the suggested procedure. In the future, the selected influencing factors will be used as input parameter for uncertainty propagation analysis.

Journal Articles

Comprehensive seismic evaluation of HTTR against the 2011 off the Pacific coast of Tohoku Earthquake

Ono, Masato; Iigaki, Kazuhiko; Sawahata, Hiroaki; Shimazaki, Yosuke; Shimizu, Atsushi; Inoi, Hiroyuki; Kondo, Toshinari; Kojima, Keidai; Takada, Shoji; Sawa, Kazuhiro

Journal of Nuclear Engineering and Radiation Science, 4(2), p.020906_1 - 020906_8, 2018/04

On March 11th, 2011, the 2011 off the Pacific coast of Tohoku Earthquake of magnitude 9.0 occurred. When the great earthquake occurred, the High Temperature Engineering Test Reactor (HTTR) had been stopped under the periodic inspection and maintenance of equipment and instruments. A comprehensive integrity evaluation was carried out for the HTTR facility because the maximum seismic acceleration observed at the HTTR exceeded the maximum value of design basis earthquake. The concept of comprehensive integrity evaluation is divided into two parts. One is the "visual inspection of equipment and instruments". The other is the "seismic response analysis" for the building structure, equipment and instruments using the observed earthquake. All equipment and instruments related to operation were inspected in the basic inspection. The integrity of the facilities was confirmed by comparing the inspection results or the numerical results with their evaluation criteria. As the results of inspection of equipment and instruments associated with the seismic response analysis, it was judged that there was no problem for operation of the reactor, because there was no damage and performance deterioration. The integrity of HTTR was also supported by the several operations without reactor power in cold conditions of HTTR in 2011, 2013 and 2015. Additionally, the integrity of control rod guide blocks was also confirmed visually when three control rod guide blocks and six replaceable reflector blocks were taken out from reactor core in order to change neutron startup sources in 2015.

Journal Articles

Application of nontransfer type plasma heating technology for core-material-relocation tests in boiling water reactor severe accident conditions

Abe, Yuta; Sato, Ikken; Nakagiri, Toshio; Ishimi, Akihiro; Nagae, Yuji

Journal of Nuclear Engineering and Radiation Science, 4(2), p.020901_1 - 020901_8, 2018/04

A new experimental program using non-transfer type plasma heating is under consideration in JAEA to clarify the uncertainty on core-material relocation (CMR) behavior of BWR. In order to confirm the applicability of this new technology, authors performed preparatory plasma heating tests using small-scale test pieces (107 mm $$times$$ 107 mm $$times$$ 222 mm (height)). An excellent perspective in terms of applicability of the non-transfer plasma heating to melting high melting-temperature materials such as ZrO$$_{2}$$ has been obtained. In addition, molten pool was formed at the middle height of the test piece indicating its capability to simulate the initial phase of core degradation behavior consistent with the real UO$$_{2}$$ fuel Phebus-FPT tests. Furthermore, application of EPMA, SEM/EDX and X-ray CT led to a conclusion that the pool formed consisted mainly of Zr with some concentration of oxygen which tended to be enhanced at the upper surface region of the pool. Based on these results, an excellent perspective in terms of applicability of the non-transfer plasma heating technology to the Severe Accident (SA) experimental study was obtained.

Journal Articles

Loss of core cooling test with one cooling line inactive in Vessel Cooling System of High-Temperature Engineering Test Reactor

Fujiwara, Yusuke; Nemoto, Takahiro; Tochio, Daisuke; Shinohara, Masanori; Ono, Masato; Takada, Shoji

Journal of Nuclear Engineering and Radiation Science, 3(4), p.041013_1 - 041013_8, 2017/10

In HTTR, the test was carried out at the reactor thermal power of 9 MW under the condition that one cooling line of VCS was stopped to simulate the partial loss of cooling function from the surface of RPV in addition to the loss of forced cooling flow in the core simulation. The test results showed that temperature change of the core internal structures and the biological shielding concrete was slow during the test. Temperature of RPV decreased several degrees during the test. The temperature decrease of biological shielding made of concrete was within 1$$^{circ}$$C. The numerical result simulating the detail configuration of the cooling tubes of VCS showed that the temperature rise of cooling tubes of VCS was about 15$$^{circ}$$C, which is sufficiently small, which did not significantly affect the temperature of biological shielding concrete. As the results, it was confirmed that the cooling ability of VCS can be kept in case that one cooling line of VCS is lost.

Journal Articles

Experimental study on cavitation of a liquid lithium jet for International Fusion Materials Irradiation Facility

Kondo, Hiroo; Kanemura, Takuji*; Furukawa, Tomohiro; Hirakawa, Yasushi; Wakai, Eiichi; Knaster, J.*

Journal of Nuclear Engineering and Radiation Science, 3(4), p.041005_1 - 041005_11, 2017/10

A liquid-Li free-surface stream flowing at 15 m/s under a high vacuum of 10$$^{-3}$$ Pa is to serve as a beam target (Li target) for the planned International Fusion Materials Irradiation Facility (IFMIF) or other intense fusion neutron sources. This study focuses on cavitation-like acoustic noise which was detected in a conduit downstream from the Li target. This noise was measured by using acoustic-emission (AE) sensors that were installed at several locations of the conduit via acoustic wave guides. As a result, we found that cavitation occurred only in a narrow area where the Li target impinged on the downstream conduit.

28 (Records 1-20 displayed on this page)